Power Line data bUS PLUS Cost effective data communications using existing cabling ### Power Line data bUS PLUS Lucerne University of Applied Sciences and Arts (HSLU) and the HSLU spinoff plc-tec AG have developed a Power Line Communications (PLC) technology, PLUS specifically for Mission and Time Critical (MTC) applications in aircraft, rail, smart grid, etc. PLUS provides a reliable, real-time PLC network with deterministic behavior ### PLUS Approach The PLUS protocol works on top of any power distribution network without requiring any modifications to the existing wiring. The data network can be completely removed. The signal is modulated independently of the underlying power signal. plc-tec has control of all aspects of the PLUS technology enabling design assurance compliance and customizations. #### **PLUS Protocol Variants** **PLUS-Avionics:** The PLUS protocol originally targeted MTC avionics applications. The PLUS-Avionics data bus has been designed around a proven standard for the physical layer (IEEE 1901) and a proven avionics standard for bus arbitration (ARINC-629). PLUS-PTB: The PLC Train Backbone (PTB) provides a data communication backbone for freight trains based on reliable, real-time PLC enabling transmission of critical data over the freight train bus bar. PTB uses the same physical layer as PLUS-Avionics but provides an alternative bus arbitration enabling a reliable end-to-end link across the whole train. **PLUS-Smart Grid**: PLUS-Smart Grid targets critical applications for grid monitoring and control at the medium voltage level. It extends the PLUS-Avionics protocol additionally providing a highly accurate time synchronization protocol (PLUS-TimeSync). ## **PLUS Protocol Specification** | PLUS Physical
Layer | IEEE 1901 Multi-channel Orthogonal Frequency Division
Multiplexing (OFDM) with variable channel bandwidth support | | | | | | | |------------------------------|---|----------------------------|----------------|---|---------------------------|---|---------------------------| | Carrier
Modulation | QPSK, 16-QAM, 64-QAM | | | | | | | | Frequency
Range | 2 - 42 MHz | | | | | | | | Channel
Modes | Mode 0 | Mode 1 | | Mode 2 | М | ode 3 | Mode 4 | | Bandwidth | 40 MHz | 30 MHz | | 20 MHz | 10 MHz | | 5 MHz | | Carrier
Spacing | 24.414
kHz | 16.276
kHz | | 12.207
kHz | 6.104
kHz | | 3.052
kHz | | Symbol
Duration | 40.96
μs | 61.44
μs | | 81.92
μs | 163.84
μs | | 327.68
μs | | Physical Data
Rates | 16
Mbps –
116
Mbps | 10
Mbps –
77
Mbps | | 8 Mbps
-
58
Mbps | 4 Mbps
-
29
Mbps | | 2 Mbps
-
14
Mbps | | FEC | Convolutional Turbo Coding with code rates 1/2 and 16/18 | | | | | | | | Error Detection | Multi-level Cyclic Redundancy Check (CRC) | | | | | | | | Protocol
Variants | PLUS-Avionics F | | | PLUS-Smart Grid | | PLUS-PTB | | | Bus Arbitration | ARINC-629 Basic Protocol with bus quiet time optimization | | | | | Master/slave token protocol | | | Network
Architecture | Peer-to-peer without central clock master | | | | | Master/slave with
deterministic
multi-hop (relay
nodes) | | | Network Setup/
Management | No network
management
traffic
Zero network
setup time | | sy
wi
Ti | Time synchronization with PLUS-TimeSync (accuracy <2µs) | | Train Topology
Detection using
PLUS signal with
PLUS-TTD | | | Data interfaces | PLUS provides gateway data interfaces to CAN and
Ethernet/IP networks Multiplexing of multiple networks is supported | | | | | | |